Wednesday, September 06, 2006

Industrial Ecology/Symbiosis

What is Industrial Symbiosis? -- From NISP Website

Industrial symbiosis, as part of the emerging field of industrial ecology, requires attention to the flow of materials and energy through local, regional and national economies.

It engages traditionally separate industries and other organisations in a collective approach to add competitive advantage involving physical exchange of materials, energy, water and/or by-products together with collaboration on the shared use of assets, logistics and expertise.

The keys to industrial symbiosis are collaboration, the synergistic possibilities offered by relative geographical proximity and a demand led approach. -- Definition modified by Dr Marian Chertow (2000, Yale University)

Historically, it was considered that for industrial symbiosis to work effectively the companies involved must be linked by close geographic proximity. This is no longer the case; although low value/grade materials and heat are restricted by proximity constraints, higher value synergies have no such restrictions.

Another misconception is that industrial symbiosis creates synergies involving a simple bi-lateral movement of materials, water and energy. In reality, the process can be much more complex; by having a regionally delivered but linked national programme, business problems identified in one region can have solutions developed in a second and benefits delivered in a third.

What all synergies have in common, is that they generate cost reductions and new sales for the companies involved, as well as creating significant environmental benefits such as reduced landfill and greenhouse gases. The economic activity generated also has further social benefits with the creation of new businesses and jobs.


What is Industrial Ecology? -- From
Maurice F. Strong, NAE, Symposium on Technology and Sustainable Development, 1993

The new industrial revolution will be driven by the full integration of environmental concern into our economic life. It will involve the reshaping of our entire industrial system in which efficiency in the use of materials and energy and in recycling and disposing of waste will be the key to success in both environmental and economic terms.

The current environmental focus of industry, government, and the public is on improving the environmental performance of industrial processes and the environmental attributes of products. The goal is to avoid environmental problems locally, regionally, and globally by improving the environmental efficiency of interacting production and consumption activities. Specific objectives include achieving superior efficiency and productivity through frugual use of raw materials and energy, substituting more abundant and environmentally preferable materials for those that are less so, developing new uses for waste, and reusing materials and subassemblies when products become obsolete. Unless the efficiency of industrial ecosystems can be enhanced and continuously improved, it is likely that the aspirations of future generations will be compromised by economic decisions made today.

A useful organizing framework within which to understand and alter the operations of interacting industrial activities is industrial ecology. It uses field ecology as an analogue to characterize and model interacting industrial systems as interconnected ecosystems. In industrial ecology, energy and materials are metabolized in interrelated production processes, interacting industrial sectors, and interacting production and consumption systems. The operative unit is thus termed an industrial ecosystem; the study of these units, their interrelationship, and the influence of economic, social, and political factors on their operation is industrial ecology.

In industrial ecosystems, energy and materials are temporarily embodied in products before finally being discarded. The present industrial ecology is characterized predominantly by linear flows of materials and energy. Products are produced, consumed, and simply discarded. Where there are markets for waste (as by-products of industrial production or as discarded products), the flow of energy (within the constraints of the second law of thermodynamics) and materials is semicyclical as waste is recovered and then reintroduced into the industrial ecology. Without such markets, however, predominantly linear ecologies produce waste, which must be managed, and result in what appears to be indiscriminate use of energy and materials. Air, water, and soil pollution has resulted when production and consumption processes and practices have exceeded the environment's ability to process the waste. Reaction to the media-specific environmental ills has focused on treating the symptoms at the top of smokestacks, at the ends of drains and pipes, and in landfills. As long as cures have been applied at the end of processes, their effect on the rest of the interactive production and consumption system has been minimal. That, however, is changing.

Early signs of change in the familiar industrial ecology are found in new voluntary and regulatory pollution-prevention initiatives and in changing industry practices. The new initiatives are defining products and markets. For example, some U.S. states require that products using rechargeable batteries be designed such that the batteries can be removed. Such rules define the design and makeup of products that use them. In addition, German “take-back” legislation and Japanese recycling laws require manufacturers to recover and recycle or dispose of their products. This clearly defines market requirements and extends the responsibilities of manufacturers for their products. At the same time, corporations are instituting environmental quality and design programs aimed at continuous environmental improvement of products, processes, and business strategies. As these shifts occur, it becomes crucial to understand how the flows of energy and materials could be affected by product and process changes, how desirable changes in industrial ecosystems could be made, and how they can be measured. The reorientation of environmental rules and business practices raises several questions of market responses, energy use, material choices, product and process design, interfirm relations, material and waste management, information needs, and public policy choices.

Industrial ecology has been a recurring theme in the NAE's efforts to address the relationships among industrial production, consumption, and the environment. Building on earlier efforts, the NAE convened a three-day U.S.-Japan Workshop on Industrial Ecology in March 1993. Its purpose was to exchange ideas and views about industrial ecology and to assess the technological status and strategies (immediate, short-, and long-range) being promoted to incorporate environmental factors in innovating technologies, formulating policies, and developing management strategies.

Industrial ecology is a systems-based approach to characterizing and highlighting points of leverage and changes needed to optimize industrial practices for material and energy use as well as capital expenditure.

1 Comments:

Anonymous Abhi said...

Hi there!

Anyone interested in Industrial Symbiosis, please join the blog "Industrial Ecology / Symbiosis in Action" at http://www.abhibiz.co.uk/IS.html

or email me at IS@abhibiz.co.uk to get an invitation to join.

Cheers

Abhi

4/25/2008 9:48 PM  

Post a Comment

Links to this post:

Create a Link

<< Home